$$$a^{2} - x^{2}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \left(a^{2} - x^{2}\right)\, dx$$$。
解答
逐项积分:
$${\color{red}{\int{\left(a^{2} - x^{2}\right)d x}}} = {\color{red}{\left(\int{a^{2} d x} - \int{x^{2} d x}\right)}}$$
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=a^{2}$$$:
$$- \int{x^{2} d x} + {\color{red}{\int{a^{2} d x}}} = - \int{x^{2} d x} + {\color{red}{a^{2} x}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$a^{2} x - {\color{red}{\int{x^{2} d x}}}=a^{2} x - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=a^{2} x - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
因此,
$$\int{\left(a^{2} - x^{2}\right)d x} = a^{2} x - \frac{x^{3}}{3}$$
化简:
$$\int{\left(a^{2} - x^{2}\right)d x} = x \left(a^{2} - \frac{x^{2}}{3}\right)$$
加上积分常数:
$$\int{\left(a^{2} - x^{2}\right)d x} = x \left(a^{2} - \frac{x^{2}}{3}\right)+C$$
答案
$$$\int \left(a^{2} - x^{2}\right)\, dx = x \left(a^{2} - \frac{x^{2}}{3}\right) + C$$$A