$$$a^{\frac{x}{b}}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int a^{\frac{x}{b}}\, dx$$$。
解答
设$$$u=\frac{x}{b}$$$。
则$$$du=\left(\frac{x}{b}\right)^{\prime }dx = \frac{dx}{b}$$$ (步骤见»),并有$$$dx = b du$$$。
因此,
$${\color{red}{\int{a^{\frac{x}{b}} d x}}} = {\color{red}{\int{a^{u} b d u}}}$$
对 $$$c=b$$$ 和 $$$f{\left(u \right)} = a^{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$${\color{red}{\int{a^{u} b d u}}} = {\color{red}{b \int{a^{u} d u}}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$$b {\color{red}{\int{a^{u} d u}}} = b {\color{red}{\frac{a^{u}}{\ln{\left(a \right)}}}}$$
回忆一下 $$$u=\frac{x}{b}$$$:
$$\frac{b a^{{\color{red}{u}}}}{\ln{\left(a \right)}} = \frac{b a^{{\color{red}{\frac{x}{b}}}}}{\ln{\left(a \right)}}$$
因此,
$$\int{a^{\frac{x}{b}} d x} = \frac{a^{\frac{x}{b}} b}{\ln{\left(a \right)}}$$
加上积分常数:
$$\int{a^{\frac{x}{b}} d x} = \frac{a^{\frac{x}{b}} b}{\ln{\left(a \right)}}+C$$
答案
$$$\int a^{\frac{x}{b}}\, dx = \frac{a^{\frac{x}{b}} b}{\ln\left(a\right)} + C$$$A