Integral dari $$$a^{\frac{x}{b}}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int a^{\frac{x}{b}}\, dx$$$.
Solusi
Misalkan $$$u=\frac{x}{b}$$$.
Kemudian $$$du=\left(\frac{x}{b}\right)^{\prime }dx = \frac{dx}{b}$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = b du$$$.
Dengan demikian,
$${\color{red}{\int{a^{\frac{x}{b}} d x}}} = {\color{red}{\int{a^{u} b d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=b$$$ dan $$$f{\left(u \right)} = a^{u}$$$:
$${\color{red}{\int{a^{u} b d u}}} = {\color{red}{b \int{a^{u} d u}}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$$b {\color{red}{\int{a^{u} d u}}} = b {\color{red}{\frac{a^{u}}{\ln{\left(a \right)}}}}$$
Ingat bahwa $$$u=\frac{x}{b}$$$:
$$\frac{b a^{{\color{red}{u}}}}{\ln{\left(a \right)}} = \frac{b a^{{\color{red}{\frac{x}{b}}}}}{\ln{\left(a \right)}}$$
Oleh karena itu,
$$\int{a^{\frac{x}{b}} d x} = \frac{a^{\frac{x}{b}} b}{\ln{\left(a \right)}}$$
Tambahkan konstanta integrasi:
$$\int{a^{\frac{x}{b}} d x} = \frac{a^{\frac{x}{b}} b}{\ln{\left(a \right)}}+C$$
Jawaban
$$$\int a^{\frac{x}{b}}\, dx = \frac{a^{\frac{x}{b}} b}{\ln\left(a\right)} + C$$$A