Ολοκλήρωμα της $$$a^{\frac{x}{b}}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int a^{\frac{x}{b}}\, dx$$$.
Λύση
Έστω $$$u=\frac{x}{b}$$$.
Τότε $$$du=\left(\frac{x}{b}\right)^{\prime }dx = \frac{dx}{b}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = b du$$$.
Το ολοκλήρωμα γίνεται
$${\color{red}{\int{a^{\frac{x}{b}} d x}}} = {\color{red}{\int{a^{u} b d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=b$$$ και $$$f{\left(u \right)} = a^{u}$$$:
$${\color{red}{\int{a^{u} b d u}}} = {\color{red}{b \int{a^{u} d u}}}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$$b {\color{red}{\int{a^{u} d u}}} = b {\color{red}{\frac{a^{u}}{\ln{\left(a \right)}}}}$$
Θυμηθείτε ότι $$$u=\frac{x}{b}$$$:
$$\frac{b a^{{\color{red}{u}}}}{\ln{\left(a \right)}} = \frac{b a^{{\color{red}{\frac{x}{b}}}}}{\ln{\left(a \right)}}$$
Επομένως,
$$\int{a^{\frac{x}{b}} d x} = \frac{a^{\frac{x}{b}} b}{\ln{\left(a \right)}}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{a^{\frac{x}{b}} d x} = \frac{a^{\frac{x}{b}} b}{\ln{\left(a \right)}}+C$$
Απάντηση
$$$\int a^{\frac{x}{b}}\, dx = \frac{a^{\frac{x}{b}} b}{\ln\left(a\right)} + C$$$A