Ολοκλήρωμα της $$$a^{\frac{x}{b}}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$a^{\frac{x}{b}}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int a^{\frac{x}{b}}\, dx$$$.

Λύση

Έστω $$$u=\frac{x}{b}$$$.

Τότε $$$du=\left(\frac{x}{b}\right)^{\prime }dx = \frac{dx}{b}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = b du$$$.

Το ολοκλήρωμα γίνεται

$${\color{red}{\int{a^{\frac{x}{b}} d x}}} = {\color{red}{\int{a^{u} b d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=b$$$ και $$$f{\left(u \right)} = a^{u}$$$:

$${\color{red}{\int{a^{u} b d u}}} = {\color{red}{b \int{a^{u} d u}}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:

$$b {\color{red}{\int{a^{u} d u}}} = b {\color{red}{\frac{a^{u}}{\ln{\left(a \right)}}}}$$

Θυμηθείτε ότι $$$u=\frac{x}{b}$$$:

$$\frac{b a^{{\color{red}{u}}}}{\ln{\left(a \right)}} = \frac{b a^{{\color{red}{\frac{x}{b}}}}}{\ln{\left(a \right)}}$$

Επομένως,

$$\int{a^{\frac{x}{b}} d x} = \frac{a^{\frac{x}{b}} b}{\ln{\left(a \right)}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{a^{\frac{x}{b}} d x} = \frac{a^{\frac{x}{b}} b}{\ln{\left(a \right)}}+C$$

Απάντηση

$$$\int a^{\frac{x}{b}}\, dx = \frac{a^{\frac{x}{b}} b}{\ln\left(a\right)} + C$$$A


Please try a new game Rotatly