$$$\sinh{\left(x \right)}$$$ 的二阶导数
您的输入
求$$$\frac{d^{2}}{dx^{2}} \left(\sinh{\left(x \right)}\right)$$$。
解答
求一阶导数 $$$\frac{d}{dx} \left(\sinh{\left(x \right)}\right)$$$
双曲正弦函数的导数为 $$$\frac{d}{dx} \left(\sinh{\left(x \right)}\right) = \cosh{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sinh{\left(x \right)}\right)\right)} = {\color{red}\left(\cosh{\left(x \right)}\right)}$$因此,$$$\frac{d}{dx} \left(\sinh{\left(x \right)}\right) = \cosh{\left(x \right)}$$$。
接下来,$$$\frac{d^{2}}{dx^{2}} \left(\sinh{\left(x \right)}\right) = \frac{d}{dx} \left(\cosh{\left(x \right)}\right)$$$
双曲余弦函数的导数为$$$\frac{d}{dx} \left(\cosh{\left(x \right)}\right) = \sinh{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\cosh{\left(x \right)}\right)\right)} = {\color{red}\left(\sinh{\left(x \right)}\right)}$$因此,$$$\frac{d}{dx} \left(\cosh{\left(x \right)}\right) = \sinh{\left(x \right)}$$$。
因此,$$$\frac{d^{2}}{dx^{2}} \left(\sinh{\left(x \right)}\right) = \sinh{\left(x \right)}$$$。
答案
$$$\frac{d^{2}}{dx^{2}} \left(\sinh{\left(x \right)}\right) = \sinh{\left(x \right)}$$$A
Please try a new game Rotatly