$$$\ln\left(1 - x\right)$$$的导数

该计算器将求$$$\ln\left(1 - x\right)$$$的导数,并显示步骤。

相关计算器: 对数求导法计算器, 带步骤的隐函数求导计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d}{dx} \left(\ln\left(1 - x\right)\right)$$$

解答

函数$$$\ln\left(1 - x\right)$$$是两个函数$$$f{\left(u \right)} = \ln\left(u\right)$$$$$$g{\left(x \right)} = 1 - x$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$

应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(1 - x\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(1 - x\right)\right)}$$

自然对数的导数为 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(1 - x\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(1 - x\right)$$

返回到原变量:

$$\frac{\frac{d}{dx} \left(1 - x\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(1 - x\right)}{{\color{red}\left(1 - x\right)}}$$

和/差的导数等于导数的和/差:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(1 - x\right)\right)}}{1 - x} = \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(x\right)\right)}}{1 - x}$$

常数的导数是$$$0$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} - \frac{d}{dx} \left(x\right)}{1 - x} = \frac{{\color{red}\left(0\right)} - \frac{d}{dx} \left(x\right)}{1 - x}$$

应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{1 - x} = - \frac{{\color{red}\left(1\right)}}{1 - x}$$

化简:

$$- \frac{1}{1 - x} = \frac{1}{x - 1}$$

因此,$$$\frac{d}{dx} \left(\ln\left(1 - x\right)\right) = \frac{1}{x - 1}$$$

答案

$$$\frac{d}{dx} \left(\ln\left(1 - x\right)\right) = \frac{1}{x - 1}$$$A


Please try a new game Rotatly