Derivata di $$$\ln\left(1 - x\right)$$$
Calcolatrici correlate: Calcolatrice di derivazione logaritmica, Calcolatore di derivazione implicita con passaggi
Il tuo input
Trova $$$\frac{d}{dx} \left(\ln\left(1 - x\right)\right)$$$.
Soluzione
La funzione $$$\ln\left(1 - x\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = 1 - x$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(1 - x\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(1 - x\right)\right)}$$La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(1 - x\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(1 - x\right)$$Torna alla variabile originale:
$$\frac{\frac{d}{dx} \left(1 - x\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(1 - x\right)}{{\color{red}\left(1 - x\right)}}$$La derivata di una somma/differenza è la somma/differenza delle derivate:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(1 - x\right)\right)}}{1 - x} = \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) - \frac{d}{dx} \left(x\right)\right)}}{1 - x}$$La derivata di una costante è $$$0$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} - \frac{d}{dx} \left(x\right)}{1 - x} = \frac{{\color{red}\left(0\right)} - \frac{d}{dx} \left(x\right)}{1 - x}$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{1 - x} = - \frac{{\color{red}\left(1\right)}}{1 - x}$$Semplifica:
$$- \frac{1}{1 - x} = \frac{1}{x - 1}$$Quindi, $$$\frac{d}{dx} \left(\ln\left(1 - x\right)\right) = \frac{1}{x - 1}$$$.
Risposta
$$$\frac{d}{dx} \left(\ln\left(1 - x\right)\right) = \frac{1}{x - 1}$$$A