$$$\frac{4 x}{\sqrt{x^{2} - 1}}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \frac{4 x}{\sqrt{x^{2} - 1}}\, dx$$$.
Çözüm
$$$u=x^{2} - 1$$$ olsun.
Böylece $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (adımlar » görülebilir) ve $$$x dx = \frac{du}{2}$$$ elde ederiz.
İntegral şu hale gelir
$${\color{red}{\int{\frac{4 x}{\sqrt{x^{2} - 1}} d x}}} = {\color{red}{\int{\frac{2}{\sqrt{u}} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=2$$$ ve $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$ ile uygula:
$${\color{red}{\int{\frac{2}{\sqrt{u}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{\sqrt{u}} d u}\right)}}$$
Kuvvet kuralını $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=- \frac{1}{2}$$$ ile uygulayın:
$$2 {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}=2 {\color{red}{\int{u^{- \frac{1}{2}} d u}}}=2 {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=2 {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}=2 {\color{red}{\left(2 \sqrt{u}\right)}}$$
Hatırlayın ki $$$u=x^{2} - 1$$$:
$$4 \sqrt{{\color{red}{u}}} = 4 \sqrt{{\color{red}{\left(x^{2} - 1\right)}}}$$
Dolayısıyla,
$$\int{\frac{4 x}{\sqrt{x^{2} - 1}} d x} = 4 \sqrt{x^{2} - 1}$$
İntegrasyon sabitini ekleyin:
$$\int{\frac{4 x}{\sqrt{x^{2} - 1}} d x} = 4 \sqrt{x^{2} - 1}+C$$
Cevap
$$$\int \frac{4 x}{\sqrt{x^{2} - 1}}\, dx = 4 \sqrt{x^{2} - 1} + C$$$A