Integral of $$$\frac{4 x}{\sqrt{x^{2} - 1}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{4 x}{\sqrt{x^{2} - 1}}\, dx$$$.
Solution
Let $$$u=x^{2} - 1$$$.
Then $$$du=\left(x^{2} - 1\right)^{\prime }dx = 2 x dx$$$ (steps can be seen »), and we have that $$$x dx = \frac{du}{2}$$$.
Thus,
$${\color{red}{\int{\frac{4 x}{\sqrt{x^{2} - 1}} d x}}} = {\color{red}{\int{\frac{2}{\sqrt{u}} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=2$$$ and $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$:
$${\color{red}{\int{\frac{2}{\sqrt{u}} d u}}} = {\color{red}{\left(2 \int{\frac{1}{\sqrt{u}} d u}\right)}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{1}{2}$$$:
$$2 {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}=2 {\color{red}{\int{u^{- \frac{1}{2}} d u}}}=2 {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=2 {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}=2 {\color{red}{\left(2 \sqrt{u}\right)}}$$
Recall that $$$u=x^{2} - 1$$$:
$$4 \sqrt{{\color{red}{u}}} = 4 \sqrt{{\color{red}{\left(x^{2} - 1\right)}}}$$
Therefore,
$$\int{\frac{4 x}{\sqrt{x^{2} - 1}} d x} = 4 \sqrt{x^{2} - 1}$$
Add the constant of integration:
$$\int{\frac{4 x}{\sqrt{x^{2} - 1}} d x} = 4 \sqrt{x^{2} - 1}+C$$
Answer
$$$\int \frac{4 x}{\sqrt{x^{2} - 1}}\, dx = 4 \sqrt{x^{2} - 1} + C$$$A