Enhetstangentvektor för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 4 t^{2}, \frac{6}{t}, 11\right\rangle$$$
Relaterade kalkylatorer: Räknare för enhetsnormalvektor, Kalkylator för enhetsbinormalvektor
Din inmatning
Bestäm enhetstangentvektorn för $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 4 t^{2}, \frac{6}{t}, 11\right\rangle$$$.
Lösning
För att bestämma enhetstangentvektorn behöver vi ta derivatan av $$$\mathbf{\vec{r}\left(t\right)}$$$ (tangentvektorn) och sedan normalisera den (till en enhetsvektor).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$ (för stegen, se derivataräknare).
Bestäm enhetsvektorn för $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{4 t^{3}}{\sqrt{16 t^{6} + 9}}, - \frac{3}{\sqrt{16 t^{6} + 9}}, 0\right\rangle$$$ (för steg, se enhetsvektorräknare).
Svar
Enhetstangentvektorn är $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{4 t^{3}}{\sqrt{16 t^{6} + 9}}, - \frac{3}{\sqrt{16 t^{6} + 9}}, 0\right\rangle.$$$A