Vettore tangente unitario di $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 4 t^{2}, \frac{6}{t}, 11\right\rangle$$$
Calcolatrici correlate: Calcolatore del vettore normale unitario, Calcolatore del vettore binormale unitario
Il tuo input
Trova il vettore tangente unitario per $$$\mathbf{\vec{r}\left(t\right)} = \left\langle 4 t^{2}, \frac{6}{t}, 11\right\rangle$$$.
Soluzione
Per trovare il vettore tangente unitario, dobbiamo calcolare la derivata di $$$\mathbf{\vec{r}\left(t\right)}$$$ (il vettore tangente) e poi normalizzarne il risultato (ottenere il vettore unitario).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 8 t, - \frac{6}{t^{2}}, 0\right\rangle$$$ (per i passaggi, vedi calcolatore di derivate).
Trova il versore: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{4 t^{3}}{\sqrt{16 t^{6} + 9}}, - \frac{3}{\sqrt{16 t^{6} + 9}}, 0\right\rangle$$$ (per i passaggi, vedi calcolatore di versori).
Risposta
Il vettore tangente unitario è $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{4 t^{3}}{\sqrt{16 t^{6} + 9}}, - \frac{3}{\sqrt{16 t^{6} + 9}}, 0\right\rangle.$$$A