Integral de $$$\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$.

Solução

Multiplique o numerador e o denominador por um cosseno e escreva todo o restante em termos do seno, usando a fórmula $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ com $$$\alpha=x$$$:

$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} d x}}}$$

Seja $$$u=\sin{\left(x \right)}$$$.

Então $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (veja os passos »), e obtemos $$$\cos{\left(x \right)} dx = du$$$.

Assim,

$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}}$$

Como o grau do numerador não é menor que o grau do denominador, realize a divisão longa de polinômios (os passos podem ser vistos »):

$${\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}} = {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}}$$

Integre termo a termo:

$${\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}} = {\color{red}{\left(- \int{1 d u} + \int{\frac{1}{1 - u^{2}} d u}\right)}}$$

Aplique a regra da constante $$$\int c\, du = c u$$$ usando $$$c=1$$$:

$$\int{\frac{1}{1 - u^{2}} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{1 - u^{2}} d u} - {\color{red}{u}}$$

Efetue a decomposição em frações parciais (os passos podem ser vistos »):

$$- u + {\color{red}{\int{\frac{1}{1 - u^{2}} d u}}} = - u + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$

Integre termo a termo:

$$- u + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}} = - u + {\color{red}{\left(- \int{\frac{1}{2 \left(u - 1\right)} d u} + \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u + 1}$$$:

$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$

Seja $$$v=u + 1$$$.

Então $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (veja os passos »), e obtemos $$$du = dv$$$.

A integral pode ser reescrita como

$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{u + 1} d u}}}}{2} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

A integral de $$$\frac{1}{v}$$$ é $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Recorde que $$$v=u + 1$$$:

$$- u + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u - 1\right)} d u} = - u + \frac{\ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u - 1\right)} d u}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \frac{1}{u - 1}$$$:

$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$

Seja $$$v=u - 1$$$.

Então $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (veja os passos »), e obtemos $$$du = dv$$$.

A integral torna-se

$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

A integral de $$$\frac{1}{v}$$$ é $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Recorde que $$$v=u - 1$$$:

$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2}$$

Recorde que $$$u=\sin{\left(x \right)}$$$:

$$- \frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)}}{2} - {\color{red}{u}} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\sin{\left(x \right)}}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{\sin{\left(x \right)}}}}\right| \right)}}{2} - {\color{red}{\sin{\left(x \right)}}}$$

Portanto,

$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\sin{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\sin{\left(x \right)} + 1}\right| \right)}}{2} - \sin{\left(x \right)}$$

Adicione a constante de integração:

$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\sin{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\sin{\left(x \right)} + 1}\right| \right)}}{2} - \sin{\left(x \right)}+C$$

Resposta

$$$\int \frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \left(- \frac{\ln\left(\left|{\sin{\left(x \right)} - 1}\right|\right)}{2} + \frac{\ln\left(\left|{\sin{\left(x \right)} + 1}\right|\right)}{2} - \sin{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly