$$$\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}$$$ 的积分

该计算器将求出$$$\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$

解答

将分子和分母同时乘以一个余弦,并将其余部分用正弦表示,使用公式 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$,取 $$$\alpha=x$$$:

$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} d x}}}$$

$$$u=\sin{\left(x \right)}$$$

$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步骤见»),并有$$$\cos{\left(x \right)} dx = du$$$

因此,

$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}}$$

由于分子次数不小于分母次数,进行多项式长除法(步骤见»):

$${\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}} = {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}}$$

逐项积分:

$${\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}} = {\color{red}{\left(- \int{1 d u} + \int{\frac{1}{1 - u^{2}} d u}\right)}}$$

应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$

$$\int{\frac{1}{1 - u^{2}} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{1 - u^{2}} d u} - {\color{red}{u}}$$

进行部分分式分解(步骤可见»):

$$- u + {\color{red}{\int{\frac{1}{1 - u^{2}} d u}}} = - u + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$

逐项积分:

$$- u + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}} = - u + {\color{red}{\left(- \int{\frac{1}{2 \left(u - 1\right)} d u} + \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u + 1}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$

$$$v=u + 1$$$

$$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (步骤见»),并有$$$du = dv$$$

该积分可以改写为

$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{u + 1} d u}}}}{2} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

$$$\frac{1}{v}$$$ 的积分为 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

回忆一下 $$$v=u + 1$$$:

$$- u + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u - 1\right)} d u} = - u + \frac{\ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u - 1\right)} d u}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = \frac{1}{u - 1}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$

$$$v=u - 1$$$

$$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (步骤见»),并有$$$du = dv$$$

因此,

$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

$$$\frac{1}{v}$$$ 的积分为 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

回忆一下 $$$v=u - 1$$$:

$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2}$$

回忆一下 $$$u=\sin{\left(x \right)}$$$:

$$- \frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)}}{2} - {\color{red}{u}} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\sin{\left(x \right)}}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{\sin{\left(x \right)}}}}\right| \right)}}{2} - {\color{red}{\sin{\left(x \right)}}}$$

因此,

$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\sin{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\sin{\left(x \right)} + 1}\right| \right)}}{2} - \sin{\left(x \right)}$$

加上积分常数:

$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\sin{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\sin{\left(x \right)} + 1}\right| \right)}}{2} - \sin{\left(x \right)}+C$$

答案

$$$\int \frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \left(- \frac{\ln\left(\left|{\sin{\left(x \right)} - 1}\right|\right)}{2} + \frac{\ln\left(\left|{\sin{\left(x \right)} + 1}\right|\right)}{2} - \sin{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly