Integral of $$$\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$.
Solution
Multiply the numerator and denominator by one cosine and write everything else in terms of the sine, using the formula $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ with $$$\alpha=x$$$:
$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} d x}}}$$
Let $$$u=\sin{\left(x \right)}$$$.
Then $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\cos{\left(x \right)} dx = du$$$.
Thus,
$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}}$$
Since the degree of the numerator is not less than the degree of the denominator, perform polynomial long division (steps can be seen »):
$${\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}} = {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}}$$
Integrate term by term:
$${\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}} = {\color{red}{\left(- \int{1 d u} + \int{\frac{1}{1 - u^{2}} d u}\right)}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$$\int{\frac{1}{1 - u^{2}} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{1 - u^{2}} d u} - {\color{red}{u}}$$
Perform partial fraction decomposition (steps can be seen »):
$$- u + {\color{red}{\int{\frac{1}{1 - u^{2}} d u}}} = - u + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$
Integrate term by term:
$$- u + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}} = - u + {\color{red}{\left(- \int{\frac{1}{2 \left(u - 1\right)} d u} + \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \frac{1}{u + 1}$$$:
$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$
Let $$$v=u + 1$$$.
Then $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (steps can be seen »), and we have that $$$du = dv$$$.
Thus,
$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{u + 1} d u}}}}{2} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
The integral of $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Recall that $$$v=u + 1$$$:
$$- u + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u - 1\right)} d u} = - u + \frac{\ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u - 1\right)} d u}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \frac{1}{u - 1}$$$:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$
Let $$$v=u - 1$$$.
Then $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (steps can be seen »), and we have that $$$du = dv$$$.
So,
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
The integral of $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Recall that $$$v=u - 1$$$:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2}$$
Recall that $$$u=\sin{\left(x \right)}$$$:
$$- \frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)}}{2} - {\color{red}{u}} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\sin{\left(x \right)}}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{\sin{\left(x \right)}}}}\right| \right)}}{2} - {\color{red}{\sin{\left(x \right)}}}$$
Therefore,
$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\sin{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\sin{\left(x \right)} + 1}\right| \right)}}{2} - \sin{\left(x \right)}$$
Add the constant of integration:
$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\sin{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\sin{\left(x \right)} + 1}\right| \right)}}{2} - \sin{\left(x \right)}+C$$
Answer
$$$\int \frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \left(- \frac{\ln\left(\left|{\sin{\left(x \right)} - 1}\right|\right)}{2} + \frac{\ln\left(\left|{\sin{\left(x \right)} + 1}\right|\right)}{2} - \sin{\left(x \right)}\right) + C$$$A