$$$\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}\, dx$$$을(를) 구하시오.
풀이
분자와 분모에 코사인을 각각 한 번 곱하고, 공식 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$에서 $$$\alpha=x$$$를 사용하여 나머지는 모두 사인으로 표현하시오.:
$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} d x}}}$$
$$$u=\sin{\left(x \right)}$$$라 하자.
그러면 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(x \right)} dx = du$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$${\color{red}{\int{\frac{\sin^{2}{\left(x \right)} \cos{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}}$$
분자의 차수가 분모의 차수보다 크거나 같으므로 다항식의 긴 나눗셈을 수행하십시오(단계는 »에서 볼 수 있습니다):
$${\color{red}{\int{\frac{u^{2}}{1 - u^{2}} d u}}} = {\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(-1 + \frac{1}{1 - u^{2}}\right)d u}}} = {\color{red}{\left(- \int{1 d u} + \int{\frac{1}{1 - u^{2}} d u}\right)}}$$
상수 법칙 $$$\int c\, du = c u$$$을 $$$c=1$$$에 적용하십시오:
$$\int{\frac{1}{1 - u^{2}} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{1 - u^{2}} d u} - {\color{red}{u}}$$
부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):
$$- u + {\color{red}{\int{\frac{1}{1 - u^{2}} d u}}} = - u + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$
각 항별로 적분하십시오:
$$- u + {\color{red}{\int{\left(\frac{1}{2 \left(u + 1\right)} - \frac{1}{2 \left(u - 1\right)}\right)d u}}} = - u + {\color{red}{\left(- \int{\frac{1}{2 \left(u - 1\right)} d u} + \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{u + 1}$$$에 적용하세요:
$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$
$$$v=u + 1$$$라 하자.
그러면 $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = dv$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{u + 1} d u}}}}{2} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u - \int{\frac{1}{2 \left(u - 1\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
다음 $$$v=u + 1$$$을 기억하라:
$$- u + \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u - 1\right)} d u} = - u + \frac{\ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u - 1\right)} d u}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = \frac{1}{u - 1}$$$에 적용하세요:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$
$$$v=u - 1$$$라 하자.
그러면 $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = dv$$$임을 얻습니다.
따라서,
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
다음 $$$v=u - 1$$$을 기억하라:
$$- u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = - u + \frac{\ln{\left(\left|{u + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2}$$
다음 $$$u=\sin{\left(x \right)}$$$을 기억하라:
$$- \frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)}}{2} - {\color{red}{u}} = - \frac{\ln{\left(\left|{-1 + {\color{red}{\sin{\left(x \right)}}}}\right| \right)}}{2} + \frac{\ln{\left(\left|{1 + {\color{red}{\sin{\left(x \right)}}}}\right| \right)}}{2} - {\color{red}{\sin{\left(x \right)}}}$$
따라서,
$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\sin{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\sin{\left(x \right)} + 1}\right| \right)}}{2} - \sin{\left(x \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}} d x} = - \frac{\ln{\left(\left|{\sin{\left(x \right)} - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{\sin{\left(x \right)} + 1}\right| \right)}}{2} - \sin{\left(x \right)}+C$$
정답
$$$\int \frac{\sin^{2}{\left(x \right)}}{\cos{\left(x \right)}}\, dx = \left(- \frac{\ln\left(\left|{\sin{\left(x \right)} - 1}\right|\right)}{2} + \frac{\ln\left(\left|{\sin{\left(x \right)} + 1}\right|\right)}{2} - \sin{\left(x \right)}\right) + C$$$A