Integral de $$$22 i a^{2} b^{x - 1} n t x$$$ em relação a $$$x$$$

A calculadora encontrará a integral/primitiva de $$$22 i a^{2} b^{x - 1} n t x$$$ em relação a $$$x$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int 22 i a^{2} b^{x - 1} n t x\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=22 i a^{2} n t$$$ e $$$f{\left(x \right)} = b^{x - 1} x$$$:

$${\color{red}{\int{22 i a^{2} b^{x - 1} n t x d x}}} = {\color{red}{\left(22 i a^{2} n t \int{b^{x - 1} x d x}\right)}}$$

Para a integral $$$\int{b^{x - 1} x d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=b^{x - 1} dx$$$.

Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{b^{x - 1} d x}=\frac{b^{x - 1}}{\ln{\left(b \right)}}$$$ (os passos podem ser vistos »).

A integral pode ser reescrita como

$$22 i a^{2} n t {\color{red}{\int{b^{x - 1} x d x}}}=22 i a^{2} n t {\color{red}{\left(x \cdot \frac{b^{x - 1}}{\ln{\left(b \right)}}-\int{\frac{b^{x - 1}}{\ln{\left(b \right)}} \cdot 1 d x}\right)}}=22 i a^{2} n t {\color{red}{\left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \int{\frac{b^{x - 1}}{\ln{\left(b \right)}} d x}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{\ln{\left(b \right)}}$$$ e $$$f{\left(x \right)} = b^{x - 1}$$$:

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - {\color{red}{\int{\frac{b^{x - 1}}{\ln{\left(b \right)}} d x}}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - {\color{red}{\frac{\int{b^{x - 1} d x}}{\ln{\left(b \right)}}}}\right)$$

Seja $$$u=x - 1$$$.

Então $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.

A integral pode ser reescrita como

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{x - 1} d x}}}}{\ln{\left(b \right)}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{u} d u}}}}{\ln{\left(b \right)}}\right)$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{u} d u}}}}{\ln{\left(b \right)}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\frac{b^{u}}{\ln{\left(b \right)}}}}}{\ln{\left(b \right)}}\right)$$

Recorde que $$$u=x - 1$$$:

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{{\color{red}{u}}}}{\ln{\left(b \right)}^{2}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{{\color{red}{\left(x - 1\right)}}}}{\ln{\left(b \right)}^{2}}\right)$$

Portanto,

$$\int{22 i a^{2} b^{x - 1} n t x d x} = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{x - 1}}{\ln{\left(b \right)}^{2}}\right)$$

Simplifique:

$$\int{22 i a^{2} b^{x - 1} n t x d x} = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln{\left(b \right)} - 1\right)}{\ln{\left(b \right)}^{2}}$$

Adicione a constante de integração:

$$\int{22 i a^{2} b^{x - 1} n t x d x} = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln{\left(b \right)} - 1\right)}{\ln{\left(b \right)}^{2}}+C$$

Resposta

$$$\int 22 i a^{2} b^{x - 1} n t x\, dx = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln\left(b\right) - 1\right)}{\ln^{2}\left(b\right)} + C$$$A


Please try a new game Rotatly