$$$22 i a^{2} b^{x - 1} n t x$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int 22 i a^{2} b^{x - 1} n t x\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=22 i a^{2} n t$$$ 與 $$$f{\left(x \right)} = b^{x - 1} x$$$:
$${\color{red}{\int{22 i a^{2} b^{x - 1} n t x d x}}} = {\color{red}{\left(22 i a^{2} n t \int{b^{x - 1} x d x}\right)}}$$
對於積分 $$$\int{b^{x - 1} x d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=x$$$ 與 $$$\operatorname{dv}=b^{x - 1} dx$$$。
則 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{b^{x - 1} d x}=\frac{b^{x - 1}}{\ln{\left(b \right)}}$$$(步驟見 »)。
因此,
$$22 i a^{2} n t {\color{red}{\int{b^{x - 1} x d x}}}=22 i a^{2} n t {\color{red}{\left(x \cdot \frac{b^{x - 1}}{\ln{\left(b \right)}}-\int{\frac{b^{x - 1}}{\ln{\left(b \right)}} \cdot 1 d x}\right)}}=22 i a^{2} n t {\color{red}{\left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \int{\frac{b^{x - 1}}{\ln{\left(b \right)}} d x}\right)}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{\ln{\left(b \right)}}$$$ 與 $$$f{\left(x \right)} = b^{x - 1}$$$:
$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - {\color{red}{\int{\frac{b^{x - 1}}{\ln{\left(b \right)}} d x}}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - {\color{red}{\frac{\int{b^{x - 1} d x}}{\ln{\left(b \right)}}}}\right)$$
令 $$$u=x - 1$$$。
則 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
該積分變為
$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{x - 1} d x}}}}{\ln{\left(b \right)}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{u} d u}}}}{\ln{\left(b \right)}}\right)$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:
$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{u} d u}}}}{\ln{\left(b \right)}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\frac{b^{u}}{\ln{\left(b \right)}}}}}{\ln{\left(b \right)}}\right)$$
回顧一下 $$$u=x - 1$$$:
$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{{\color{red}{u}}}}{\ln{\left(b \right)}^{2}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{{\color{red}{\left(x - 1\right)}}}}{\ln{\left(b \right)}^{2}}\right)$$
因此,
$$\int{22 i a^{2} b^{x - 1} n t x d x} = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{x - 1}}{\ln{\left(b \right)}^{2}}\right)$$
化簡:
$$\int{22 i a^{2} b^{x - 1} n t x d x} = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln{\left(b \right)} - 1\right)}{\ln{\left(b \right)}^{2}}$$
加上積分常數:
$$\int{22 i a^{2} b^{x - 1} n t x d x} = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln{\left(b \right)} - 1\right)}{\ln{\left(b \right)}^{2}}+C$$
答案
$$$\int 22 i a^{2} b^{x - 1} n t x\, dx = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln\left(b\right) - 1\right)}{\ln^{2}\left(b\right)} + C$$$A