$$$22 i a^{2} b^{x - 1} n t x$$$ 关于$$$x$$$的积分

该计算器将求出$$$22 i a^{2} b^{x - 1} n t x$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int 22 i a^{2} b^{x - 1} n t x\, dx$$$

解答

$$$c=22 i a^{2} n t$$$$$$f{\left(x \right)} = b^{x - 1} x$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{22 i a^{2} b^{x - 1} n t x d x}}} = {\color{red}{\left(22 i a^{2} n t \int{b^{x - 1} x d x}\right)}}$$

对于积分$$$\int{b^{x - 1} x d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=b^{x - 1} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{b^{x - 1} d x}=\frac{b^{x - 1}}{\ln{\left(b \right)}}$$$ (步骤见 »)。

所以,

$$22 i a^{2} n t {\color{red}{\int{b^{x - 1} x d x}}}=22 i a^{2} n t {\color{red}{\left(x \cdot \frac{b^{x - 1}}{\ln{\left(b \right)}}-\int{\frac{b^{x - 1}}{\ln{\left(b \right)}} \cdot 1 d x}\right)}}=22 i a^{2} n t {\color{red}{\left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \int{\frac{b^{x - 1}}{\ln{\left(b \right)}} d x}\right)}}$$

$$$c=\frac{1}{\ln{\left(b \right)}}$$$$$$f{\left(x \right)} = b^{x - 1}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - {\color{red}{\int{\frac{b^{x - 1}}{\ln{\left(b \right)}} d x}}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - {\color{red}{\frac{\int{b^{x - 1} d x}}{\ln{\left(b \right)}}}}\right)$$

$$$u=x - 1$$$

$$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步骤见»),并有$$$dx = du$$$

所以,

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{x - 1} d x}}}}{\ln{\left(b \right)}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{u} d u}}}}{\ln{\left(b \right)}}\right)$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{u} d u}}}}{\ln{\left(b \right)}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\frac{b^{u}}{\ln{\left(b \right)}}}}}{\ln{\left(b \right)}}\right)$$

回忆一下 $$$u=x - 1$$$:

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{{\color{red}{u}}}}{\ln{\left(b \right)}^{2}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{{\color{red}{\left(x - 1\right)}}}}{\ln{\left(b \right)}^{2}}\right)$$

因此,

$$\int{22 i a^{2} b^{x - 1} n t x d x} = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{x - 1}}{\ln{\left(b \right)}^{2}}\right)$$

化简:

$$\int{22 i a^{2} b^{x - 1} n t x d x} = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln{\left(b \right)} - 1\right)}{\ln{\left(b \right)}^{2}}$$

加上积分常数:

$$\int{22 i a^{2} b^{x - 1} n t x d x} = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln{\left(b \right)} - 1\right)}{\ln{\left(b \right)}^{2}}+C$$

答案

$$$\int 22 i a^{2} b^{x - 1} n t x\, dx = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln\left(b\right) - 1\right)}{\ln^{2}\left(b\right)} + C$$$A


Please try a new game Rotatly