$$$22 i a^{2} b^{x - 1} n t x$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$22 i a^{2} b^{x - 1} n t x$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int 22 i a^{2} b^{x - 1} n t x\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=22 i a^{2} n t$$$$$$f{\left(x \right)} = b^{x - 1} x$$$ に対して適用する:

$${\color{red}{\int{22 i a^{2} b^{x - 1} n t x d x}}} = {\color{red}{\left(22 i a^{2} n t \int{b^{x - 1} x d x}\right)}}$$

積分 $$$\int{b^{x - 1} x d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=b^{x - 1} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{b^{x - 1} d x}=\frac{b^{x - 1}}{\ln{\left(b \right)}}$$$(手順は»を参照)。

したがって、

$$22 i a^{2} n t {\color{red}{\int{b^{x - 1} x d x}}}=22 i a^{2} n t {\color{red}{\left(x \cdot \frac{b^{x - 1}}{\ln{\left(b \right)}}-\int{\frac{b^{x - 1}}{\ln{\left(b \right)}} \cdot 1 d x}\right)}}=22 i a^{2} n t {\color{red}{\left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \int{\frac{b^{x - 1}}{\ln{\left(b \right)}} d x}\right)}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{\ln{\left(b \right)}}$$$$$$f{\left(x \right)} = b^{x - 1}$$$ に対して適用する:

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - {\color{red}{\int{\frac{b^{x - 1}}{\ln{\left(b \right)}} d x}}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - {\color{red}{\frac{\int{b^{x - 1} d x}}{\ln{\left(b \right)}}}}\right)$$

$$$u=x - 1$$$ とする。

すると $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。

したがって、

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{x - 1} d x}}}}{\ln{\left(b \right)}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{u} d u}}}}{\ln{\left(b \right)}}\right)$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=b$$$:

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\int{b^{u} d u}}}}{\ln{\left(b \right)}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{{\color{red}{\frac{b^{u}}{\ln{\left(b \right)}}}}}{\ln{\left(b \right)}}\right)$$

次のことを思い出してください $$$u=x - 1$$$:

$$22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{{\color{red}{u}}}}{\ln{\left(b \right)}^{2}}\right) = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{{\color{red}{\left(x - 1\right)}}}}{\ln{\left(b \right)}^{2}}\right)$$

したがって、

$$\int{22 i a^{2} b^{x - 1} n t x d x} = 22 i a^{2} n t \left(\frac{b^{x - 1} x}{\ln{\left(b \right)}} - \frac{b^{x - 1}}{\ln{\left(b \right)}^{2}}\right)$$

簡単化せよ:

$$\int{22 i a^{2} b^{x - 1} n t x d x} = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln{\left(b \right)} - 1\right)}{\ln{\left(b \right)}^{2}}$$

積分定数を加える:

$$\int{22 i a^{2} b^{x - 1} n t x d x} = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln{\left(b \right)} - 1\right)}{\ln{\left(b \right)}^{2}}+C$$

解答

$$$\int 22 i a^{2} b^{x - 1} n t x\, dx = \frac{22 i a^{2} b^{x - 1} n t \left(x \ln\left(b\right) - 1\right)}{\ln^{2}\left(b\right)} + C$$$A


Please try a new game Rotatly