Integral de $$$544 i n t - x^{2} - 1$$$ em relação a $$$x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(544 i n t - x^{2} - 1\right)\, dx$$$.
Solução
Integre termo a termo:
$${\color{red}{\int{\left(544 i n t - x^{2} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{x^{2} d x} + \int{544 i n t d x}\right)}}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=1$$$:
$$- \int{x^{2} d x} + \int{544 i n t d x} - {\color{red}{\int{1 d x}}} = - \int{x^{2} d x} + \int{544 i n t d x} - {\color{red}{x}}$$
Aplique a regra da potência $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=2$$$:
$$- x + \int{544 i n t d x} - {\color{red}{\int{x^{2} d x}}}=- x + \int{544 i n t d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- x + \int{544 i n t d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$
Aplique a regra da constante $$$\int c\, dx = c x$$$ usando $$$c=544 i n t$$$:
$$- \frac{x^{3}}{3} - x + {\color{red}{\int{544 i n t d x}}} = - \frac{x^{3}}{3} - x + {\color{red}{\left(544 i n t x\right)}}$$
Portanto,
$$\int{\left(544 i n t - x^{2} - 1\right)d x} = 544 i n t x - \frac{x^{3}}{3} - x$$
Simplifique:
$$\int{\left(544 i n t - x^{2} - 1\right)d x} = \frac{x \left(1632 i n t - x^{2} - 3\right)}{3}$$
Adicione a constante de integração:
$$\int{\left(544 i n t - x^{2} - 1\right)d x} = \frac{x \left(1632 i n t - x^{2} - 3\right)}{3}+C$$
Resposta
$$$\int \left(544 i n t - x^{2} - 1\right)\, dx = \frac{x \left(1632 i n t - x^{2} - 3\right)}{3} + C$$$A