Integrale di $$$544 i n t - x^{2} - 1$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$544 i n t - x^{2} - 1$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(544 i n t - x^{2} - 1\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(544 i n t - x^{2} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{x^{2} d x} + \int{544 i n t d x}\right)}}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:

$$- \int{x^{2} d x} + \int{544 i n t d x} - {\color{red}{\int{1 d x}}} = - \int{x^{2} d x} + \int{544 i n t d x} - {\color{red}{x}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- x + \int{544 i n t d x} - {\color{red}{\int{x^{2} d x}}}=- x + \int{544 i n t d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- x + \int{544 i n t d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=544 i n t$$$:

$$- \frac{x^{3}}{3} - x + {\color{red}{\int{544 i n t d x}}} = - \frac{x^{3}}{3} - x + {\color{red}{\left(544 i n t x\right)}}$$

Pertanto,

$$\int{\left(544 i n t - x^{2} - 1\right)d x} = 544 i n t x - \frac{x^{3}}{3} - x$$

Semplifica:

$$\int{\left(544 i n t - x^{2} - 1\right)d x} = \frac{x \left(1632 i n t - x^{2} - 3\right)}{3}$$

Aggiungi la costante di integrazione:

$$\int{\left(544 i n t - x^{2} - 1\right)d x} = \frac{x \left(1632 i n t - x^{2} - 3\right)}{3}+C$$

Risposta

$$$\int \left(544 i n t - x^{2} - 1\right)\, dx = \frac{x \left(1632 i n t - x^{2} - 3\right)}{3} + C$$$A


Please try a new game Rotatly