Integral de $$$\frac{1}{\sqrt{t}}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{1}{\sqrt{t}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{1}{\sqrt{t}}\, dt$$$.

Solução

Aplique a regra da potência $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=- \frac{1}{2}$$$:

$${\color{red}{\int{\frac{1}{\sqrt{t}} d t}}}={\color{red}{\int{t^{- \frac{1}{2}} d t}}}={\color{red}{\frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}={\color{red}{\left(2 t^{\frac{1}{2}}\right)}}={\color{red}{\left(2 \sqrt{t}\right)}}$$

Portanto,

$$\int{\frac{1}{\sqrt{t}} d t} = 2 \sqrt{t}$$

Adicione a constante de integração:

$$\int{\frac{1}{\sqrt{t}} d t} = 2 \sqrt{t}+C$$

Resposta

$$$\int \frac{1}{\sqrt{t}}\, dt = 2 \sqrt{t} + C$$$A


Please try a new game Rotatly