Integral de $$$x^{2} e^{4 x}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int x^{2} e^{4 x}\, dx$$$.
Solução
Para a integral $$$\int{x^{2} e^{4 x} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x^{2}$$$ e $$$\operatorname{dv}=e^{4 x} dx$$$.
Então $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (os passos podem ser vistos »).
Portanto,
$${\color{red}{\int{x^{2} e^{4 x} d x}}}={\color{red}{\left(x^{2} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot 2 x d x}\right)}}={\color{red}{\left(\frac{x^{2} e^{4 x}}{4} - \int{\frac{x e^{4 x}}{2} d x}\right)}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = x e^{4 x}$$$:
$$\frac{x^{2} e^{4 x}}{4} - {\color{red}{\int{\frac{x e^{4 x}}{2} d x}}} = \frac{x^{2} e^{4 x}}{4} - {\color{red}{\left(\frac{\int{x e^{4 x} d x}}{2}\right)}}$$
Para a integral $$$\int{x e^{4 x} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=e^{4 x} dx$$$.
Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (os passos podem ser vistos »).
Portanto,
$$\frac{x^{2} e^{4 x}}{4} - \frac{{\color{red}{\int{x e^{4 x} d x}}}}{2}=\frac{x^{2} e^{4 x}}{4} - \frac{{\color{red}{\left(x \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot 1 d x}\right)}}}{2}=\frac{x^{2} e^{4 x}}{4} - \frac{{\color{red}{\left(\frac{x e^{4 x}}{4} - \int{\frac{e^{4 x}}{4} d x}\right)}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(x \right)} = e^{4 x}$$$:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{\frac{e^{4 x}}{4} d x}}}}{2} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\left(\frac{\int{e^{4 x} d x}}{4}\right)}}}{2}$$
Seja $$$u=4 x$$$.
Então $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{4}$$$.
A integral torna-se
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{e^{4 x} d x}}}}{8} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{\frac{e^{u}}{4} d u}}}}{8}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{\frac{e^{u}}{4} d u}}}}{8} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\left(\frac{\int{e^{u} d u}}{4}\right)}}}{8}$$
A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{e^{u} d u}}}}{32} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{e^{u}}}}{32}$$
Recorde que $$$u=4 x$$$:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{e^{{\color{red}{u}}}}{32} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{e^{{\color{red}{\left(4 x\right)}}}}{32}$$
Portanto,
$$\int{x^{2} e^{4 x} d x} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{e^{4 x}}{32}$$
Simplifique:
$$\int{x^{2} e^{4 x} d x} = \frac{\left(8 x^{2} - 4 x + 1\right) e^{4 x}}{32}$$
Adicione a constante de integração:
$$\int{x^{2} e^{4 x} d x} = \frac{\left(8 x^{2} - 4 x + 1\right) e^{4 x}}{32}+C$$
Resposta
$$$\int x^{2} e^{4 x}\, dx = \frac{\left(8 x^{2} - 4 x + 1\right) e^{4 x}}{32} + C$$$A