$$$x^{2} e^{4 x}$$$의 적분
사용자 입력
$$$\int x^{2} e^{4 x}\, dx$$$을(를) 구하시오.
풀이
적분 $$$\int{x^{2} e^{4 x} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x^{2}$$$와 $$$\operatorname{dv}=e^{4 x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$${\color{red}{\int{x^{2} e^{4 x} d x}}}={\color{red}{\left(x^{2} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot 2 x d x}\right)}}={\color{red}{\left(\frac{x^{2} e^{4 x}}{4} - \int{\frac{x e^{4 x}}{2} d x}\right)}}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(x \right)} = x e^{4 x}$$$에 적용하세요:
$$\frac{x^{2} e^{4 x}}{4} - {\color{red}{\int{\frac{x e^{4 x}}{2} d x}}} = \frac{x^{2} e^{4 x}}{4} - {\color{red}{\left(\frac{\int{x e^{4 x} d x}}{2}\right)}}$$
적분 $$$\int{x e^{4 x} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=x$$$와 $$$\operatorname{dv}=e^{4 x} dx$$$라고 하자.
그러면 $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$\frac{x^{2} e^{4 x}}{4} - \frac{{\color{red}{\int{x e^{4 x} d x}}}}{2}=\frac{x^{2} e^{4 x}}{4} - \frac{{\color{red}{\left(x \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot 1 d x}\right)}}}{2}=\frac{x^{2} e^{4 x}}{4} - \frac{{\color{red}{\left(\frac{x e^{4 x}}{4} - \int{\frac{e^{4 x}}{4} d x}\right)}}}{2}$$
상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(x \right)} = e^{4 x}$$$에 적용하세요:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{\frac{e^{4 x}}{4} d x}}}}{2} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\left(\frac{\int{e^{4 x} d x}}{4}\right)}}}{2}$$
$$$u=4 x$$$라 하자.
그러면 $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{4}$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{e^{4 x} d x}}}}{8} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{\frac{e^{u}}{4} d u}}}}{8}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(u \right)} = e^{u}$$$에 적용하세요:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{\frac{e^{u}}{4} d u}}}}{8} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\left(\frac{\int{e^{u} d u}}{4}\right)}}}{8}$$
지수 함수의 적분은 $$$\int{e^{u} d u} = e^{u}$$$입니다:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{e^{u} d u}}}}{32} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{e^{u}}}}{32}$$
다음 $$$u=4 x$$$을 기억하라:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{e^{{\color{red}{u}}}}{32} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{e^{{\color{red}{\left(4 x\right)}}}}{32}$$
따라서,
$$\int{x^{2} e^{4 x} d x} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{e^{4 x}}{32}$$
간단히 하시오:
$$\int{x^{2} e^{4 x} d x} = \frac{\left(8 x^{2} - 4 x + 1\right) e^{4 x}}{32}$$
적분 상수를 추가하세요:
$$\int{x^{2} e^{4 x} d x} = \frac{\left(8 x^{2} - 4 x + 1\right) e^{4 x}}{32}+C$$
정답
$$$\int x^{2} e^{4 x}\, dx = \frac{\left(8 x^{2} - 4 x + 1\right) e^{4 x}}{32} + C$$$A