Integral of $$$x^{2} e^{4 x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{2} e^{4 x}\, dx$$$.
Solution
For the integral $$$\int{x^{2} e^{4 x} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=x^{2}$$$ and $$$\operatorname{dv}=e^{4 x} dx$$$.
Then $$$\operatorname{du}=\left(x^{2}\right)^{\prime }dx=2 x dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (steps can be seen »).
Therefore,
$${\color{red}{\int{x^{2} e^{4 x} d x}}}={\color{red}{\left(x^{2} \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot 2 x d x}\right)}}={\color{red}{\left(\frac{x^{2} e^{4 x}}{4} - \int{\frac{x e^{4 x}}{2} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = x e^{4 x}$$$:
$$\frac{x^{2} e^{4 x}}{4} - {\color{red}{\int{\frac{x e^{4 x}}{2} d x}}} = \frac{x^{2} e^{4 x}}{4} - {\color{red}{\left(\frac{\int{x e^{4 x} d x}}{2}\right)}}$$
For the integral $$$\int{x e^{4 x} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=x$$$ and $$$\operatorname{dv}=e^{4 x} dx$$$.
Then $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{4 x} d x}=\frac{e^{4 x}}{4}$$$ (steps can be seen »).
The integral becomes
$$\frac{x^{2} e^{4 x}}{4} - \frac{{\color{red}{\int{x e^{4 x} d x}}}}{2}=\frac{x^{2} e^{4 x}}{4} - \frac{{\color{red}{\left(x \cdot \frac{e^{4 x}}{4}-\int{\frac{e^{4 x}}{4} \cdot 1 d x}\right)}}}{2}=\frac{x^{2} e^{4 x}}{4} - \frac{{\color{red}{\left(\frac{x e^{4 x}}{4} - \int{\frac{e^{4 x}}{4} d x}\right)}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(x \right)} = e^{4 x}$$$:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{\frac{e^{4 x}}{4} d x}}}}{2} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\left(\frac{\int{e^{4 x} d x}}{4}\right)}}}{2}$$
Let $$$u=4 x$$$.
Then $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{4}$$$.
Therefore,
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{e^{4 x} d x}}}}{8} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{\frac{e^{u}}{4} d u}}}}{8}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{\frac{e^{u}}{4} d u}}}}{8} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\left(\frac{\int{e^{u} d u}}{4}\right)}}}{8}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{\int{e^{u} d u}}}}{32} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{{\color{red}{e^{u}}}}{32}$$
Recall that $$$u=4 x$$$:
$$\frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{e^{{\color{red}{u}}}}{32} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{e^{{\color{red}{\left(4 x\right)}}}}{32}$$
Therefore,
$$\int{x^{2} e^{4 x} d x} = \frac{x^{2} e^{4 x}}{4} - \frac{x e^{4 x}}{8} + \frac{e^{4 x}}{32}$$
Simplify:
$$\int{x^{2} e^{4 x} d x} = \frac{\left(8 x^{2} - 4 x + 1\right) e^{4 x}}{32}$$
Add the constant of integration:
$$\int{x^{2} e^{4 x} d x} = \frac{\left(8 x^{2} - 4 x + 1\right) e^{4 x}}{32}+C$$
Answer
$$$\int x^{2} e^{4 x}\, dx = \frac{\left(8 x^{2} - 4 x + 1\right) e^{4 x}}{32} + C$$$A