Integral de $$$\frac{a^{x}}{b}$$$ em relação a $$$x$$$

A calculadora encontrará a integral/primitiva de $$$\frac{a^{x}}{b}$$$ em relação a $$$x$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{a^{x}}{b}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{b}$$$ e $$$f{\left(x \right)} = a^{x}$$$:

$${\color{red}{\int{\frac{a^{x}}{b} d x}}} = {\color{red}{\frac{\int{a^{x} d x}}{b}}}$$

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:

$$\frac{{\color{red}{\int{a^{x} d x}}}}{b} = \frac{{\color{red}{\frac{a^{x}}{\ln{\left(a \right)}}}}}{b}$$

Portanto,

$$\int{\frac{a^{x}}{b} d x} = \frac{a^{x}}{b \ln{\left(a \right)}}$$

Adicione a constante de integração:

$$\int{\frac{a^{x}}{b} d x} = \frac{a^{x}}{b \ln{\left(a \right)}}+C$$

Resposta

$$$\int \frac{a^{x}}{b}\, dx = \frac{a^{x}}{b \ln\left(a\right)} + C$$$A


Please try a new game Rotatly