$$$\frac{a^{x}}{b}$$$$$$x$$$ 的積分

此計算器會求出 $$$\frac{a^{x}}{b}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{a^{x}}{b}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{b}$$$$$$f{\left(x \right)} = a^{x}$$$

$${\color{red}{\int{\frac{a^{x}}{b} d x}}} = {\color{red}{\frac{\int{a^{x} d x}}{b}}}$$

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:

$$\frac{{\color{red}{\int{a^{x} d x}}}}{b} = \frac{{\color{red}{\frac{a^{x}}{\ln{\left(a \right)}}}}}{b}$$

因此,

$$\int{\frac{a^{x}}{b} d x} = \frac{a^{x}}{b \ln{\left(a \right)}}$$

加上積分常數:

$$\int{\frac{a^{x}}{b} d x} = \frac{a^{x}}{b \ln{\left(a \right)}}+C$$

答案

$$$\int \frac{a^{x}}{b}\, dx = \frac{a^{x}}{b \ln\left(a\right)} + C$$$A


Please try a new game Rotatly