$$$\frac{a^{x}}{b}$$$ の $$$x$$$ に関する積分
入力内容
$$$\int \frac{a^{x}}{b}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{b}$$$ と $$$f{\left(x \right)} = a^{x}$$$ に対して適用する:
$${\color{red}{\int{\frac{a^{x}}{b} d x}}} = {\color{red}{\frac{\int{a^{x} d x}}{b}}}$$
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$$\frac{{\color{red}{\int{a^{x} d x}}}}{b} = \frac{{\color{red}{\frac{a^{x}}{\ln{\left(a \right)}}}}}{b}$$
したがって、
$$\int{\frac{a^{x}}{b} d x} = \frac{a^{x}}{b \ln{\left(a \right)}}$$
積分定数を加える:
$$\int{\frac{a^{x}}{b} d x} = \frac{a^{x}}{b \ln{\left(a \right)}}+C$$
解答
$$$\int \frac{a^{x}}{b}\, dx = \frac{a^{x}}{b \ln\left(a\right)} + C$$$A
Please try a new game Rotatly