Integral de $$$7 \cos{\left(7 x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int 7 \cos{\left(7 x \right)}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=7$$$ e $$$f{\left(x \right)} = \cos{\left(7 x \right)}$$$:
$${\color{red}{\int{7 \cos{\left(7 x \right)} d x}}} = {\color{red}{\left(7 \int{\cos{\left(7 x \right)} d x}\right)}}$$
Seja $$$u=7 x$$$.
Então $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{7}$$$.
Assim,
$$7 {\color{red}{\int{\cos{\left(7 x \right)} d x}}} = 7 {\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{7}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$7 {\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}} = 7 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{7}\right)}}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$
Recorde que $$$u=7 x$$$:
$$\sin{\left({\color{red}{u}} \right)} = \sin{\left({\color{red}{\left(7 x\right)}} \right)}$$
Portanto,
$$\int{7 \cos{\left(7 x \right)} d x} = \sin{\left(7 x \right)}$$
Adicione a constante de integração:
$$\int{7 \cos{\left(7 x \right)} d x} = \sin{\left(7 x \right)}+C$$
Resposta
$$$\int 7 \cos{\left(7 x \right)}\, dx = \sin{\left(7 x \right)} + C$$$A