$$$7 \cos{\left(7 x \right)}$$$の積分
入力内容
$$$\int 7 \cos{\left(7 x \right)}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=7$$$ と $$$f{\left(x \right)} = \cos{\left(7 x \right)}$$$ に対して適用する:
$${\color{red}{\int{7 \cos{\left(7 x \right)} d x}}} = {\color{red}{\left(7 \int{\cos{\left(7 x \right)} d x}\right)}}$$
$$$u=7 x$$$ とする。
すると $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{7}$$$ となります。
積分は次のようになります
$$7 {\color{red}{\int{\cos{\left(7 x \right)} d x}}} = 7 {\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{7}$$$ と $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ に対して適用する:
$$7 {\color{red}{\int{\frac{\cos{\left(u \right)}}{7} d u}}} = 7 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{7}\right)}}$$
余弦の積分は$$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$
次のことを思い出してください $$$u=7 x$$$:
$$\sin{\left({\color{red}{u}} \right)} = \sin{\left({\color{red}{\left(7 x\right)}} \right)}$$
したがって、
$$\int{7 \cos{\left(7 x \right)} d x} = \sin{\left(7 x \right)}$$
積分定数を加える:
$$\int{7 \cos{\left(7 x \right)} d x} = \sin{\left(7 x \right)}+C$$
解答
$$$\int 7 \cos{\left(7 x \right)}\, dx = \sin{\left(7 x \right)} + C$$$A