Integral de $$$5 x e^{- \frac{6 x}{5}}$$$

A calculadora encontrará a integral/antiderivada de $$$5 x e^{- \frac{6 x}{5}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int 5 x e^{- \frac{6 x}{5}}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=5$$$ e $$$f{\left(x \right)} = x e^{- \frac{6 x}{5}}$$$:

$${\color{red}{\int{5 x e^{- \frac{6 x}{5}} d x}}} = {\color{red}{\left(5 \int{x e^{- \frac{6 x}{5}} d x}\right)}}$$

Para a integral $$$\int{x e^{- \frac{6 x}{5}} d x}$$$, use integração por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sejam $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=e^{- \frac{6 x}{5}} dx$$$.

Então $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{e^{- \frac{6 x}{5}} d x}=- \frac{5 e^{- \frac{6 x}{5}}}{6}$$$ (os passos podem ser vistos »).

A integral pode ser reescrita como

$$5 {\color{red}{\int{x e^{- \frac{6 x}{5}} d x}}}=5 {\color{red}{\left(x \cdot \left(- \frac{5 e^{- \frac{6 x}{5}}}{6}\right)-\int{\left(- \frac{5 e^{- \frac{6 x}{5}}}{6}\right) \cdot 1 d x}\right)}}=5 {\color{red}{\left(- \frac{5 x e^{- \frac{6 x}{5}}}{6} - \int{\left(- \frac{5 e^{- \frac{6 x}{5}}}{6}\right)d x}\right)}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=- \frac{5}{6}$$$ e $$$f{\left(x \right)} = e^{- \frac{6 x}{5}}$$$:

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} - 5 {\color{red}{\int{\left(- \frac{5 e^{- \frac{6 x}{5}}}{6}\right)d x}}} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} - 5 {\color{red}{\left(- \frac{5 \int{e^{- \frac{6 x}{5}} d x}}{6}\right)}}$$

Seja $$$u=- \frac{6 x}{5}$$$.

Então $$$du=\left(- \frac{6 x}{5}\right)^{\prime }dx = - \frac{6 dx}{5}$$$ (veja os passos »), e obtemos $$$dx = - \frac{5 du}{6}$$$.

Logo,

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} + \frac{25 {\color{red}{\int{e^{- \frac{6 x}{5}} d x}}}}{6} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} + \frac{25 {\color{red}{\int{\left(- \frac{5 e^{u}}{6}\right)d u}}}}{6}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=- \frac{5}{6}$$$ e $$$f{\left(u \right)} = e^{u}$$$:

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} + \frac{25 {\color{red}{\int{\left(- \frac{5 e^{u}}{6}\right)d u}}}}{6} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} + \frac{25 {\color{red}{\left(- \frac{5 \int{e^{u} d u}}{6}\right)}}}{6}$$

A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 {\color{red}{\int{e^{u} d u}}}}{36} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 {\color{red}{e^{u}}}}{36}$$

Recorde que $$$u=- \frac{6 x}{5}$$$:

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 e^{{\color{red}{u}}}}{36} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 e^{{\color{red}{\left(- \frac{6 x}{5}\right)}}}}{36}$$

Portanto,

$$\int{5 x e^{- \frac{6 x}{5}} d x} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 e^{- \frac{6 x}{5}}}{36}$$

Simplifique:

$$\int{5 x e^{- \frac{6 x}{5}} d x} = \frac{25 \left(- 6 x - 5\right) e^{- \frac{6 x}{5}}}{36}$$

Adicione a constante de integração:

$$\int{5 x e^{- \frac{6 x}{5}} d x} = \frac{25 \left(- 6 x - 5\right) e^{- \frac{6 x}{5}}}{36}+C$$

Resposta

$$$\int 5 x e^{- \frac{6 x}{5}}\, dx = \frac{25 \left(- 6 x - 5\right) e^{- \frac{6 x}{5}}}{36} + C$$$A


Please try a new game Rotatly