Integral de $$$5 x e^{- \frac{6 x}{5}}$$$

La calculadora encontrará la integral/antiderivada de $$$5 x e^{- \frac{6 x}{5}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int 5 x e^{- \frac{6 x}{5}}\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=5$$$ y $$$f{\left(x \right)} = x e^{- \frac{6 x}{5}}$$$:

$${\color{red}{\int{5 x e^{- \frac{6 x}{5}} d x}}} = {\color{red}{\left(5 \int{x e^{- \frac{6 x}{5}} d x}\right)}}$$

Para la integral $$$\int{x e^{- \frac{6 x}{5}} d x}$$$, utiliza la integración por partes $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Sean $$$\operatorname{u}=x$$$ y $$$\operatorname{dv}=e^{- \frac{6 x}{5}} dx$$$.

Entonces $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{e^{- \frac{6 x}{5}} d x}=- \frac{5 e^{- \frac{6 x}{5}}}{6}$$$ (los pasos pueden verse »).

Por lo tanto,

$$5 {\color{red}{\int{x e^{- \frac{6 x}{5}} d x}}}=5 {\color{red}{\left(x \cdot \left(- \frac{5 e^{- \frac{6 x}{5}}}{6}\right)-\int{\left(- \frac{5 e^{- \frac{6 x}{5}}}{6}\right) \cdot 1 d x}\right)}}=5 {\color{red}{\left(- \frac{5 x e^{- \frac{6 x}{5}}}{6} - \int{\left(- \frac{5 e^{- \frac{6 x}{5}}}{6}\right)d x}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=- \frac{5}{6}$$$ y $$$f{\left(x \right)} = e^{- \frac{6 x}{5}}$$$:

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} - 5 {\color{red}{\int{\left(- \frac{5 e^{- \frac{6 x}{5}}}{6}\right)d x}}} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} - 5 {\color{red}{\left(- \frac{5 \int{e^{- \frac{6 x}{5}} d x}}{6}\right)}}$$

Sea $$$u=- \frac{6 x}{5}$$$.

Entonces $$$du=\left(- \frac{6 x}{5}\right)^{\prime }dx = - \frac{6 dx}{5}$$$ (los pasos pueden verse »), y obtenemos que $$$dx = - \frac{5 du}{6}$$$.

Por lo tanto,

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} + \frac{25 {\color{red}{\int{e^{- \frac{6 x}{5}} d x}}}}{6} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} + \frac{25 {\color{red}{\int{\left(- \frac{5 e^{u}}{6}\right)d u}}}}{6}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=- \frac{5}{6}$$$ y $$$f{\left(u \right)} = e^{u}$$$:

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} + \frac{25 {\color{red}{\int{\left(- \frac{5 e^{u}}{6}\right)d u}}}}{6} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} + \frac{25 {\color{red}{\left(- \frac{5 \int{e^{u} d u}}{6}\right)}}}{6}$$

La integral de la función exponencial es $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 {\color{red}{\int{e^{u} d u}}}}{36} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 {\color{red}{e^{u}}}}{36}$$

Recordemos que $$$u=- \frac{6 x}{5}$$$:

$$- \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 e^{{\color{red}{u}}}}{36} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 e^{{\color{red}{\left(- \frac{6 x}{5}\right)}}}}{36}$$

Por lo tanto,

$$\int{5 x e^{- \frac{6 x}{5}} d x} = - \frac{25 x e^{- \frac{6 x}{5}}}{6} - \frac{125 e^{- \frac{6 x}{5}}}{36}$$

Simplificar:

$$\int{5 x e^{- \frac{6 x}{5}} d x} = \frac{25 \left(- 6 x - 5\right) e^{- \frac{6 x}{5}}}{36}$$

Añade la constante de integración:

$$\int{5 x e^{- \frac{6 x}{5}} d x} = \frac{25 \left(- 6 x - 5\right) e^{- \frac{6 x}{5}}}{36}+C$$

Respuesta

$$$\int 5 x e^{- \frac{6 x}{5}}\, dx = \frac{25 \left(- 6 x - 5\right) e^{- \frac{6 x}{5}}}{36} + C$$$A


Please try a new game Rotatly