Integral de $$$-1 + \frac{1}{v^{2}}$$$

A calculadora encontrará a integral/antiderivada de $$$-1 + \frac{1}{v^{2}}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(-1 + \frac{1}{v^{2}}\right)\, dv$$$.

Solução

Integre termo a termo:

$${\color{red}{\int{\left(-1 + \frac{1}{v^{2}}\right)d v}}} = {\color{red}{\left(- \int{1 d v} + \int{\frac{1}{v^{2}} d v}\right)}}$$

Aplique a regra da constante $$$\int c\, dv = c v$$$ usando $$$c=1$$$:

$$\int{\frac{1}{v^{2}} d v} - {\color{red}{\int{1 d v}}} = \int{\frac{1}{v^{2}} d v} - {\color{red}{v}}$$

Aplique a regra da potência $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=-2$$$:

$$- v + {\color{red}{\int{\frac{1}{v^{2}} d v}}}=- v + {\color{red}{\int{v^{-2} d v}}}=- v + {\color{red}{\frac{v^{-2 + 1}}{-2 + 1}}}=- v + {\color{red}{\left(- v^{-1}\right)}}=- v + {\color{red}{\left(- \frac{1}{v}\right)}}$$

Portanto,

$$\int{\left(-1 + \frac{1}{v^{2}}\right)d v} = - v - \frac{1}{v}$$

Adicione a constante de integração:

$$\int{\left(-1 + \frac{1}{v^{2}}\right)d v} = - v - \frac{1}{v}+C$$

Resposta

$$$\int \left(-1 + \frac{1}{v^{2}}\right)\, dv = \left(- v - \frac{1}{v}\right) + C$$$A


Please try a new game Rotatly