Ολοκλήρωμα του $$$-1 + \frac{1}{v^{2}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$-1 + \frac{1}{v^{2}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(-1 + \frac{1}{v^{2}}\right)\, dv$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(-1 + \frac{1}{v^{2}}\right)d v}}} = {\color{red}{\left(- \int{1 d v} + \int{\frac{1}{v^{2}} d v}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dv = c v$$$ με $$$c=1$$$:

$$\int{\frac{1}{v^{2}} d v} - {\color{red}{\int{1 d v}}} = \int{\frac{1}{v^{2}} d v} - {\color{red}{v}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=-2$$$:

$$- v + {\color{red}{\int{\frac{1}{v^{2}} d v}}}=- v + {\color{red}{\int{v^{-2} d v}}}=- v + {\color{red}{\frac{v^{-2 + 1}}{-2 + 1}}}=- v + {\color{red}{\left(- v^{-1}\right)}}=- v + {\color{red}{\left(- \frac{1}{v}\right)}}$$

Επομένως,

$$\int{\left(-1 + \frac{1}{v^{2}}\right)d v} = - v - \frac{1}{v}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(-1 + \frac{1}{v^{2}}\right)d v} = - v - \frac{1}{v}+C$$

Απάντηση

$$$\int \left(-1 + \frac{1}{v^{2}}\right)\, dv = \left(- v - \frac{1}{v}\right) + C$$$A


Please try a new game Rotatly