Integral of $$$-1 + \frac{1}{v^{2}}$$$

The calculator will find the integral/antiderivative of $$$-1 + \frac{1}{v^{2}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(-1 + \frac{1}{v^{2}}\right)\, dv$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(-1 + \frac{1}{v^{2}}\right)d v}}} = {\color{red}{\left(- \int{1 d v} + \int{\frac{1}{v^{2}} d v}\right)}}$$

Apply the constant rule $$$\int c\, dv = c v$$$ with $$$c=1$$$:

$$\int{\frac{1}{v^{2}} d v} - {\color{red}{\int{1 d v}}} = \int{\frac{1}{v^{2}} d v} - {\color{red}{v}}$$

Apply the power rule $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:

$$- v + {\color{red}{\int{\frac{1}{v^{2}} d v}}}=- v + {\color{red}{\int{v^{-2} d v}}}=- v + {\color{red}{\frac{v^{-2 + 1}}{-2 + 1}}}=- v + {\color{red}{\left(- v^{-1}\right)}}=- v + {\color{red}{\left(- \frac{1}{v}\right)}}$$

Therefore,

$$\int{\left(-1 + \frac{1}{v^{2}}\right)d v} = - v - \frac{1}{v}$$

Add the constant of integration:

$$\int{\left(-1 + \frac{1}{v^{2}}\right)d v} = - v - \frac{1}{v}+C$$

Answer

$$$\int \left(-1 + \frac{1}{v^{2}}\right)\, dv = \left(- v - \frac{1}{v}\right) + C$$$A


Please try a new game Rotatly