Integral de $$$\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\sqrt{2}$$$ e $$$f{\left(x \right)} = \tan{\left(x \right)} \sec{\left(x \right)}$$$:

$${\color{red}{\int{\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\sqrt{2} \int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$

A integral de $$$\tan{\left(x \right)} \sec{\left(x \right)}$$$ é $$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$$:

$$\sqrt{2} {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = \sqrt{2} {\color{red}{\sec{\left(x \right)}}}$$

Portanto,

$$\int{\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)} d x} = \sqrt{2} \sec{\left(x \right)}$$

Adicione a constante de integração:

$$\int{\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)} d x} = \sqrt{2} \sec{\left(x \right)}+C$$

Resposta

$$$\int \sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}\, dx = \sqrt{2} \sec{\left(x \right)} + C$$$A


Please try a new game Rotatly