Funktion $$$\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}$$$ integraali

Laskin löytää funktion $$$\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\sqrt{2}$$$ ja $$$f{\left(x \right)} = \tan{\left(x \right)} \sec{\left(x \right)}$$$:

$${\color{red}{\int{\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\sqrt{2} \int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$

Funktion $$$\tan{\left(x \right)} \sec{\left(x \right)}$$$ integraali on $$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$$:

$$\sqrt{2} {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = \sqrt{2} {\color{red}{\sec{\left(x \right)}}}$$

Näin ollen,

$$\int{\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)} d x} = \sqrt{2} \sec{\left(x \right)}$$

Lisää integrointivakio:

$$\int{\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)} d x} = \sqrt{2} \sec{\left(x \right)}+C$$

Vastaus

$$$\int \sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}\, dx = \sqrt{2} \sec{\left(x \right)} + C$$$A


Please try a new game Rotatly