Integral dari $$$\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\sqrt{2}$$$ dan $$$f{\left(x \right)} = \tan{\left(x \right)} \sec{\left(x \right)}$$$:
$${\color{red}{\int{\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\sqrt{2} \int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$
Integral dari $$$\tan{\left(x \right)} \sec{\left(x \right)}$$$ adalah $$$\int{\tan{\left(x \right)} \sec{\left(x \right)} d x} = \sec{\left(x \right)}$$$:
$$\sqrt{2} {\color{red}{\int{\tan{\left(x \right)} \sec{\left(x \right)} d x}}} = \sqrt{2} {\color{red}{\sec{\left(x \right)}}}$$
Oleh karena itu,
$$\int{\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)} d x} = \sqrt{2} \sec{\left(x \right)}$$
Tambahkan konstanta integrasi:
$$\int{\sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)} d x} = \sqrt{2} \sec{\left(x \right)}+C$$
Jawaban
$$$\int \sqrt{2} \tan{\left(x \right)} \sec{\left(x \right)}\, dx = \sqrt{2} \sec{\left(x \right)} + C$$$A