Wronskiaan van $$$e^{4 t}$$$, $$$e^{- \frac{7 t}{2}}$$$

De rekenmachine bepaalt de Wronskiaan van de $$$2$$$ functies $$$e^{4 t}$$$, $$$e^{- \frac{7 t}{2}}$$$, waarbij de stappen worden getoond.
Door komma's gescheiden.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bereken de Wronskiaan van $$$\left\{f_{1} = e^{4 t}, f_{2} = e^{- \frac{7 t}{2}}\right\}$$$.

Oplossing

De Wronskiaan wordt gegeven door de volgende determinant: $$$W{\left(f_{1},f_{2} \right)}\left(t\right) = \left|\begin{array}{cc}f_{1}\left(t\right) & f_{2}\left(t\right)\\f_{1}^{\prime}\left(t\right) & f_{2}^{\prime}\left(t\right)\end{array}\right|.$$$

In ons geval geldt $$$W{\left(f_{1},f_{2} \right)}\left(t\right) = \left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\\left(e^{4 t}\right)^{\prime } & \left(e^{- \frac{7 t}{2}}\right)^{\prime }\end{array}\right|.$$$

Bepaal de afgeleiden (voor de stappen, zie afgeleiderekenmachine): $$$W{\left(f_{1},f_{2} \right)}\left(t\right) = \left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right|.$$$

Bereken de determinant (voor de stappen, zie determinant calculator): $$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right| = - \frac{15 e^{\frac{t}{2}}}{2}.$$$

Antwoord

De Wronskiaan is gelijk aan $$$- \frac{15 e^{\frac{t}{2}}}{2}$$$A.


Please try a new game Rotatly