Integraal van $$$\frac{2^{a}}{b}$$$ met betrekking tot $$$a$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{2^{a}}{b}\, da$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ toe met $$$c=\frac{1}{b}$$$ en $$$f{\left(a \right)} = 2^{a}$$$:
$${\color{red}{\int{\frac{2^{a}}{b} d a}}} = {\color{red}{\frac{\int{2^{a} d a}}{b}}}$$
Apply the exponential rule $$$\int{a^{a} d a} = \frac{a^{a}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$$\frac{{\color{red}{\int{2^{a} d a}}}}{b} = \frac{{\color{red}{\frac{2^{a}}{\ln{\left(2 \right)}}}}}{b}$$
Dus,
$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}$$
Voeg de integratieconstante toe:
$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}+C$$
Antwoord
$$$\int \frac{2^{a}}{b}\, da = \frac{2^{a}}{b \ln\left(2\right)} + C$$$A