Integraal van $$$\frac{2^{a}}{b}$$$ met betrekking tot $$$a$$$

De rekenmachine zal de integraal/primitieve van $$$\frac{2^{a}}{b}$$$ met betrekking tot $$$a$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{2^{a}}{b}\, da$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ toe met $$$c=\frac{1}{b}$$$ en $$$f{\left(a \right)} = 2^{a}$$$:

$${\color{red}{\int{\frac{2^{a}}{b} d a}}} = {\color{red}{\frac{\int{2^{a} d a}}{b}}}$$

Apply the exponential rule $$$\int{a^{a} d a} = \frac{a^{a}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:

$$\frac{{\color{red}{\int{2^{a} d a}}}}{b} = \frac{{\color{red}{\frac{2^{a}}{\ln{\left(2 \right)}}}}}{b}$$

Dus,

$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}$$

Voeg de integratieconstante toe:

$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}+C$$

Antwoord

$$$\int \frac{2^{a}}{b}\, da = \frac{2^{a}}{b \ln\left(2\right)} + C$$$A


Please try a new game Rotatly