$$$a$$$에 대한 $$$\frac{2^{a}}{b}$$$의 적분
사용자 입력
$$$\int \frac{2^{a}}{b}\, da$$$을(를) 구하시오.
풀이
상수배 법칙 $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$을 $$$c=\frac{1}{b}$$$와 $$$f{\left(a \right)} = 2^{a}$$$에 적용하세요:
$${\color{red}{\int{\frac{2^{a}}{b} d a}}} = {\color{red}{\frac{\int{2^{a} d a}}{b}}}$$
Apply the exponential rule $$$\int{a^{a} d a} = \frac{a^{a}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$$\frac{{\color{red}{\int{2^{a} d a}}}}{b} = \frac{{\color{red}{\frac{2^{a}}{\ln{\left(2 \right)}}}}}{b}$$
따라서,
$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}$$
적분 상수를 추가하세요:
$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}+C$$
정답
$$$\int \frac{2^{a}}{b}\, da = \frac{2^{a}}{b \ln\left(2\right)} + C$$$A
Please try a new game Rotatly