Integral of $$$\frac{2^{a}}{b}$$$ with respect to $$$a$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{2^{a}}{b}\, da$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ with $$$c=\frac{1}{b}$$$ and $$$f{\left(a \right)} = 2^{a}$$$:
$${\color{red}{\int{\frac{2^{a}}{b} d a}}} = {\color{red}{\frac{\int{2^{a} d a}}{b}}}$$
Apply the exponential rule $$$\int{a^{a} d a} = \frac{a^{a}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$$\frac{{\color{red}{\int{2^{a} d a}}}}{b} = \frac{{\color{red}{\frac{2^{a}}{\ln{\left(2 \right)}}}}}{b}$$
Therefore,
$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}$$
Add the constant of integration:
$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}+C$$
Answer
$$$\int \frac{2^{a}}{b}\, da = \frac{2^{a}}{b \ln\left(2\right)} + C$$$A