Integral de $$$\frac{2^{a}}{b}$$$ con respecto a $$$a$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{2^{a}}{b}\, da$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ con $$$c=\frac{1}{b}$$$ y $$$f{\left(a \right)} = 2^{a}$$$:
$${\color{red}{\int{\frac{2^{a}}{b} d a}}} = {\color{red}{\frac{\int{2^{a} d a}}{b}}}$$
Apply the exponential rule $$$\int{a^{a} d a} = \frac{a^{a}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$$\frac{{\color{red}{\int{2^{a} d a}}}}{b} = \frac{{\color{red}{\frac{2^{a}}{\ln{\left(2 \right)}}}}}{b}$$
Por lo tanto,
$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}$$
Añade la constante de integración:
$$\int{\frac{2^{a}}{b} d a} = \frac{2^{a}}{b \ln{\left(2 \right)}}+C$$
Respuesta
$$$\int \frac{2^{a}}{b}\, da = \frac{2^{a}}{b \ln\left(2\right)} + C$$$A