Integraal van $$$\frac{2}{\left(x - 1\right)^{\frac{2}{3}}}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{2}{\left(x - 1\right)^{\frac{2}{3}}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{2}{\left(x - 1\right)^{\frac{2}{3}}}\, dx$$$.

Oplossing

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = \frac{1}{\left(x - 1\right)^{\frac{2}{3}}}$$$:

$${\color{red}{\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{\left(x - 1\right)^{\frac{2}{3}}} d x}\right)}}$$

Zij $$$u=x - 1$$$.

Dan $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.

Dus,

$$2 {\color{red}{\int{\frac{1}{\left(x - 1\right)^{\frac{2}{3}}} d x}}} = 2 {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=- \frac{2}{3}$$$:

$$2 {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}=2 {\color{red}{\int{u^{- \frac{2}{3}} d u}}}=2 {\color{red}{\frac{u^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1}}}=2 {\color{red}{\left(3 u^{\frac{1}{3}}\right)}}=2 {\color{red}{\left(3 \sqrt[3]{u}\right)}}$$

We herinneren eraan dat $$$u=x - 1$$$:

$$6 \sqrt[3]{{\color{red}{u}}} = 6 \sqrt[3]{{\color{red}{\left(x - 1\right)}}}$$

Dus,

$$\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x} = 6 \sqrt[3]{x - 1}$$

Voeg de integratieconstante toe:

$$\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x} = 6 \sqrt[3]{x - 1}+C$$

Antwoord

$$$\int \frac{2}{\left(x - 1\right)^{\frac{2}{3}}}\, dx = 6 \sqrt[3]{x - 1} + C$$$A


Please try a new game Rotatly