Funktion $$$\frac{2}{\left(x - 1\right)^{\frac{2}{3}}}$$$ integraali

Laskin löytää funktion $$$\frac{2}{\left(x - 1\right)^{\frac{2}{3}}}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{2}{\left(x - 1\right)^{\frac{2}{3}}}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = \frac{1}{\left(x - 1\right)^{\frac{2}{3}}}$$$:

$${\color{red}{\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{\left(x - 1\right)^{\frac{2}{3}}} d x}\right)}}$$

Olkoon $$$u=x - 1$$$.

Tällöin $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = du$$$.

Integraali muuttuu muotoon

$$2 {\color{red}{\int{\frac{1}{\left(x - 1\right)^{\frac{2}{3}}} d x}}} = 2 {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}$$

Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=- \frac{2}{3}$$$:

$$2 {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}=2 {\color{red}{\int{u^{- \frac{2}{3}} d u}}}=2 {\color{red}{\frac{u^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1}}}=2 {\color{red}{\left(3 u^{\frac{1}{3}}\right)}}=2 {\color{red}{\left(3 \sqrt[3]{u}\right)}}$$

Muista, että $$$u=x - 1$$$:

$$6 \sqrt[3]{{\color{red}{u}}} = 6 \sqrt[3]{{\color{red}{\left(x - 1\right)}}}$$

Näin ollen,

$$\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x} = 6 \sqrt[3]{x - 1}$$

Lisää integrointivakio:

$$\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x} = 6 \sqrt[3]{x - 1}+C$$

Vastaus

$$$\int \frac{2}{\left(x - 1\right)^{\frac{2}{3}}}\, dx = 6 \sqrt[3]{x - 1} + C$$$A


Please try a new game Rotatly