$$$\frac{2}{\left(x - 1\right)^{\frac{2}{3}}}$$$ 的積分
您的輸入
求$$$\int \frac{2}{\left(x - 1\right)^{\frac{2}{3}}}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$ 與 $$$f{\left(x \right)} = \frac{1}{\left(x - 1\right)^{\frac{2}{3}}}$$$:
$${\color{red}{\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{\left(x - 1\right)^{\frac{2}{3}}} d x}\right)}}$$
令 $$$u=x - 1$$$。
則 $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (步驟見»),並可得 $$$dx = du$$$。
該積分可改寫為
$$2 {\color{red}{\int{\frac{1}{\left(x - 1\right)^{\frac{2}{3}}} d x}}} = 2 {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=- \frac{2}{3}$$$:
$$2 {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}=2 {\color{red}{\int{u^{- \frac{2}{3}} d u}}}=2 {\color{red}{\frac{u^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1}}}=2 {\color{red}{\left(3 u^{\frac{1}{3}}\right)}}=2 {\color{red}{\left(3 \sqrt[3]{u}\right)}}$$
回顧一下 $$$u=x - 1$$$:
$$6 \sqrt[3]{{\color{red}{u}}} = 6 \sqrt[3]{{\color{red}{\left(x - 1\right)}}}$$
因此,
$$\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x} = 6 \sqrt[3]{x - 1}$$
加上積分常數:
$$\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x} = 6 \sqrt[3]{x - 1}+C$$
答案
$$$\int \frac{2}{\left(x - 1\right)^{\frac{2}{3}}}\, dx = 6 \sqrt[3]{x - 1} + C$$$A