$$$\frac{2}{\left(x - 1\right)^{\frac{2}{3}}}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \frac{2}{\left(x - 1\right)^{\frac{2}{3}}}\, dx$$$ を求めよ。
解答
定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=2$$$ と $$$f{\left(x \right)} = \frac{1}{\left(x - 1\right)^{\frac{2}{3}}}$$$ に対して適用する:
$${\color{red}{\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x}}} = {\color{red}{\left(2 \int{\frac{1}{\left(x - 1\right)^{\frac{2}{3}}} d x}\right)}}$$
$$$u=x - 1$$$ とする。
すると $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
この積分は次のように書き換えられる
$$2 {\color{red}{\int{\frac{1}{\left(x - 1\right)^{\frac{2}{3}}} d x}}} = 2 {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}$$
$$$n=- \frac{2}{3}$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$2 {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}=2 {\color{red}{\int{u^{- \frac{2}{3}} d u}}}=2 {\color{red}{\frac{u^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1}}}=2 {\color{red}{\left(3 u^{\frac{1}{3}}\right)}}=2 {\color{red}{\left(3 \sqrt[3]{u}\right)}}$$
次のことを思い出してください $$$u=x - 1$$$:
$$6 \sqrt[3]{{\color{red}{u}}} = 6 \sqrt[3]{{\color{red}{\left(x - 1\right)}}}$$
したがって、
$$\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x} = 6 \sqrt[3]{x - 1}$$
積分定数を加える:
$$\int{\frac{2}{\left(x - 1\right)^{\frac{2}{3}}} d x} = 6 \sqrt[3]{x - 1}+C$$
解答
$$$\int \frac{2}{\left(x - 1\right)^{\frac{2}{3}}}\, dx = 6 \sqrt[3]{x - 1} + C$$$A