Integraal van $$$\frac{a c \rho v^{2}}{2}$$$ met betrekking tot $$$v$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{a c \rho v^{2}}{2}\, dv$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=\frac{a c \rho}{2}$$$ en $$$f{\left(v \right)} = v^{2}$$$:
$${\color{red}{\int{\frac{a c \rho v^{2}}{2} d v}}} = {\color{red}{\left(\frac{a c \rho \int{v^{2} d v}}{2}\right)}}$$
Pas de machtsregel $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:
$$\frac{a c \rho {\color{red}{\int{v^{2} d v}}}}{2}=\frac{a c \rho {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{2}=\frac{a c \rho {\color{red}{\left(\frac{v^{3}}{3}\right)}}}{2}$$
Dus,
$$\int{\frac{a c \rho v^{2}}{2} d v} = \frac{a c \rho v^{3}}{6}$$
Voeg de integratieconstante toe:
$$\int{\frac{a c \rho v^{2}}{2} d v} = \frac{a c \rho v^{3}}{6}+C$$
Antwoord
$$$\int \frac{a c \rho v^{2}}{2}\, dv = \frac{a c \rho v^{3}}{6} + C$$$A