Ολοκλήρωμα της $$$\frac{a c \rho v^{2}}{2}$$$ ως προς $$$v$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\frac{a c \rho v^{2}}{2}$$$ ως προς $$$v$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{a c \rho v^{2}}{2}\, dv$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ με $$$c=\frac{a c \rho}{2}$$$ και $$$f{\left(v \right)} = v^{2}$$$:

$${\color{red}{\int{\frac{a c \rho v^{2}}{2} d v}}} = {\color{red}{\left(\frac{a c \rho \int{v^{2} d v}}{2}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$\frac{a c \rho {\color{red}{\int{v^{2} d v}}}}{2}=\frac{a c \rho {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{2}=\frac{a c \rho {\color{red}{\left(\frac{v^{3}}{3}\right)}}}{2}$$

Επομένως,

$$\int{\frac{a c \rho v^{2}}{2} d v} = \frac{a c \rho v^{3}}{6}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{a c \rho v^{2}}{2} d v} = \frac{a c \rho v^{3}}{6}+C$$

Απάντηση

$$$\int \frac{a c \rho v^{2}}{2}\, dv = \frac{a c \rho v^{3}}{6} + C$$$A


Please try a new game Rotatly