$$$v$$$에 대한 $$$\frac{a c \rho v^{2}}{2}$$$의 적분

계산기는 $$$v$$$에 대한 $$$\frac{a c \rho v^{2}}{2}$$$의 적분/원시함수를 단계별로 찾아줍니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{a c \rho v^{2}}{2}\, dv$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=\frac{a c \rho}{2}$$$$$$f{\left(v \right)} = v^{2}$$$에 적용하세요:

$${\color{red}{\int{\frac{a c \rho v^{2}}{2} d v}}} = {\color{red}{\left(\frac{a c \rho \int{v^{2} d v}}{2}\right)}}$$

멱법칙($$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:

$$\frac{a c \rho {\color{red}{\int{v^{2} d v}}}}{2}=\frac{a c \rho {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}}{2}=\frac{a c \rho {\color{red}{\left(\frac{v^{3}}{3}\right)}}}{2}$$

따라서,

$$\int{\frac{a c \rho v^{2}}{2} d v} = \frac{a c \rho v^{3}}{6}$$

적분 상수를 추가하세요:

$$\int{\frac{a c \rho v^{2}}{2} d v} = \frac{a c \rho v^{3}}{6}+C$$

정답

$$$\int \frac{a c \rho v^{2}}{2}\, dv = \frac{a c \rho v^{3}}{6} + C$$$A


Please try a new game Rotatly